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Estimating Reaction Cross Sections from Measured v-ray Yields: the ?3U(n,2n) and
29Pu(n,2n) Cross Sections

W. Younes'

Lawrence Livermore National Laboratory, Livermore, CA 94551

(Dated: November 18, 2002)

A procedure is presented to deduce the reaction-channel cross section from measured partial
~-ray cross sections. In its simplest form, the procedure consists in adding complementary mea-
sured and calculated contributions to produce the channel cross section. A matrix formalism is
introduced to provide a rigorous framework for this approach. The formalism is illustrated using
a fictitious product nucleus with a simple level scheme, and a general algorithm is presented to
process any level scheme. In order to circumvent the cumbersome algebra that can arise in the
matrix formalism, a more intuitive graphical procedure is introduced to obtain the same reaction
cross-section estimate. The features and limitations of the method are discussed, and the tech-
nique is applied to extract the **U(n,2n) and 2**Pu(n, 2n) cross sections from experimental
partial y-ray cross sections, coupled with (enhanced) Hauser-Feshbach calculations.

I. INTRODUCTION

Reaction cross sections can be estimated from measured ~-ray partial cross sections. The simplest examples of
this technique have equated the reaction cross section with the measured cross section of the 2f — Of transition, in
the case of nuclear reactions producing an even-A nucleus. For an odd-A or odd-odd product nucleus, the reaction-
channel cross section has been approximated by the sum of yields for a few transitions to the ground state [1]. In
an improved approach, additional unobserved feeding of the ground state was taken into account in an even-even
rotational nucleus by fitting a spin-dependent smooth function to differences in ~-ray intensities for the members of
the ground state band, and extrapolating to the J = 0 ground state [2]. In general the observed vy-ray transitions
do not carry all the de-excitation strength, and a model calculation of the unobserved contribution is necessary
to supplement the experimental data and reconstruct the channel cross section. Naturally, the more complete the
experimental information is, especially at the end of the y-ray cascades, the less model-dependent and the more
accurate the estimated cross section will be.

This paper presents the formalism required to combine any number of measured and calculated (e.g., using a Hauser-
Feshbach code) 7-ray partial cross sections to estimate the channel cross section. The result can be formulated simply
as the sum of measured partial cross sections combined with the sum of cross sections that were not measured, but
are supplied instead by a model calculation. The challenges in applying this “sum” method consist in relying as much
as possible on experimental data and taking proper account of the de-excitation strength that may be fragmented
and recombined in the level scheme as the nucleus decays to its ground state. For example, (n,2n) cross sections
were deduced from measured 23°U(n,2ny) and 23°Pu(n,2ny) partial cross sections [3-5] that did not include the
27 — 07 transition because it is highly converted. The 4] — 2 transition was also difficult to measure, because
of contamination from fission and target radioactive background. Therefore, in those cases, the (n,2n) cross-section
estimate relies on other partial y-ray cross sections, and a proper accounting of all experimental data and model
calculations is essential.

In section II A the sum method alluded to above is explained and couched in a matrix formalism to facilitate the
necessary bookkeeping. The formalism is illustrated with a simple level scheme. A general algorithm is developed in
section II B that is applicable to any level scheme. An alternate, graphical method is presented in section II C that
may be used to generate the matrix equation for the sum method in a more intuitive way. Finally, the sum method
is used to estimate the 3°U(n,2n) cross section in section III A, and the ?3°Pu(n, 2n) cross section in section 111 C.
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II. FORMALISM

The determination of a channel cross section from measured y-ray partial cross sections assumes that the low-lying
partial level scheme of the nucleus formed in that channel is known and that observed v rays are identified, and their
contribution to the de-excitation strength can be tracked to a final (ground or isomeric) state. A model calculation
(e.g., from a Hauser-Feshbach code) can then be used to supply the y-decay strength of the unobserved transitions.
Of course, the calculation must provide a reasonable prediction of the cross sections.

The known partial level scheme in the residual nucleus is at the center of any procedure used to combine measured
and calculated partial y-ray cross sections into an estimate of the channel cross section. The partial level scheme
consists of a set of discrete levels and branching ratios for the transitions connecting them. Consider for example the
simple decay scheme in Fig. 1. Four levels are depicted, and labeled by integer indices. In this example, the transitions
from level 4 to the ground-state level 1, and from level 3 to level 2 have been observed and their yields measured,
while the yields for the remaining transitions, from level 4 to 2 and from level 2 to 1, have not been measured, but
their branching ratios are assumed to be known. The “side-feeding” cross section of a level in this paper is defined for
a given level as the population cross section of that level not accounted for by discrete v rays decaying directly to that
level in the given level scheme. Thus, the side-feeding cross section may include contributions from direct population
by the reaction process, as well as contributions from v rays not explicitly included in the level scheme (either from
discrete states or a quasi-continuum of levels). Note that this definition differs from a more restrictive version often
used in the literature that limits side-feeding to the contribution from the reaction process itself.

In the particular cases of the 23°U(n,2n) and 239Pu(n,2n) cross sections discussed below, the side-feeding con-
tribution was not measured, but is provided by a model calculation based on the known partial level scheme. The
formalism within which these calculated side-feeding cross sections are combined with the measured transition yields
to produce the channel cross section is discussed in the sections that follow, using the level scheme in Fig. 1 as an
example.

A Matrix Method

The problem of converting the level scheme represented in Fig. 1 into more practical algebraic expressions lends
itself naturally to a matrix approach. For convenience, we define the following sums:

¢ . . .
Sgeb’;p ) = sum of experimental cross sections for a set of non-coincident, observed « rays
-al . .
542 = sum of calculated cross sections for the same set of non-coincident, observed 7 rays
1 . . . .
Sﬁﬁg; = sum of calculated cross sections for a set of non-coincident 7 rays and side-feeding

. . . le
cross sections not observed in the experiment, and complementary to S

In the context of this paper, “non-coincident” means a given excited nucleus cannot decay through more than one of
the « rays included in the sum (i.e., no “double counting” of the decay strength). The word “complementary” in the

definition of S simply means that the calculated reaction cross section, o's™”, can be written
o) = S+ ) ay

With these definitions, the sum method amounts to writing an estimate o for the cross section, with experimental
cross sections replacing calculated ones in Eq. 11.1:

o = S5PY 4 gl (IL2)
This simple equation belies the difficult task of identifying a set of measured and calculated y-ray and side-feeding
contributions that are non-coincident (so that no double-counting of the de-excitation strength occurs) and comple-
mentary (so that their sums in Eq. I1.2 produce a good estimate of the channel cross section). This task is more easily
accomplished by casting the problem in the language of matrices.

The description of the sum method in terms of a matrix equation begins with the known level scheme. The
branching ratio for a transition from level i to a lower level j is denoted by «; j, and by definition



Zai’j =1. (113)
J

The population cross section o; for a level ¢ can be obtained from the transition cross section o;_,; from that level to
any other level using the corresponding branching ratio:

o; = 0'@'_>j/041'7j. (11.4)

Alternatively, the population cross section ¢; can be obtained as the contribution from all discrete 7 rays in the partial
level scheme decaying directly (i.e. in one step) to that level, and the side-feeding contribution to that level (by the
definition of side feeding in this paper),

01 = D 0ing = D Ohi kol (IL5)
7 k

—_——

decay out decay in

Egs. I1.4 and I1.5 written for every state in the level scheme form a system of linear equations which can be solved
for the population cross section of each level. For the four-state level scheme in Fig. 1, those equations are

01 = Q2,102 + Q4,104 + U%sme)
02 = (3,203 + Q14,204 + Uésme)
P (side)
3 =03
o4 = UiSide), (IL.6)
which can be written in a more useful matrix form:
(side)
1 —Q21 0 —04,1 g1 01
B . (side)
0 1 Qa3 2 Q4 2 g9 o o5} (H 7)
0 0 1 0 o3 - O_:())side) s .
0 0 0 1 o4 (side)
0y

and inverted to extract the individual population cross sections o;. In particular, the population cross section o; of
the ground state is identically equal to the reaction cross section. Solving for ¢y in this example gives

o1 = U§Side) + 042,10251de) + 042710[3’20'§Side) + (04471 + 062’1044’2)0'[(15ide)
_ U%side) + UéSide) + U§Side) + 0'4(1Side), (H.s)

where Eq. 11.3, and the assumption that ap 1 = 32 = 1 in Fig. 1, have been used to provide numerical values for the
branching ratios. The final answer in Eq. I1.8 is not surprising since it simply states that all the cross section that
“enters” the level scheme in the form of side feeding eventually flows down to the ground state.

So far, the estimate of the channel cross section (i.e. Eq. I1.8) has relied entirely on the model calculation. To
illustrate how the sum method might be implemented within this matrix algebra, suppose that partial cross sections
for the 4 — 1 and 3 — 2 transitions have been measured. Using Eq. 11.4 and known branching ratios, the corresponding
experimental population cross sections JéeXpt) and Uffxm) for levels 3 and 4 respectively are deduced. Then the system
of equations describing the flow within the level scheme becomes

side
01 = (2,102 + 4104 + U§ )
side
02 = (3,203 + 04 204 + Ué )

¢
o3 = J:(,,eXp )

o4 = UfleXpt), (IL.9)



which gives the solution

o1 = 0_§side) + o_éside) + O_gexpt) + Uiexpt). (1110)

In this simple example, Egs. I1.8 and I1.10 are very similar, with experimental cross sections, where available, replacing
calculated side-feeding cross sections. This is not the case in general. In more complicated level schemes, only part of
the decay from a higher-lying state in the level scheme might pass through an experimentally measured level. In that
case, the solution to the corresponding set of equations would be more complicated and would involve the appropriate
branching ratios explicitly. Finally, Eq. I1.10 can be written in the sum-method form of Eq. I1.2 by making the
identifications:

S‘Si);pt) _ o_éexpt) + Uiexpt)

Sl(](;zz)lgi _ U£side) + o_éside)
SIE) = o) 5 o349 1 o) Ly

B General Algorithm

Based on the example discussed in section IT A, a general matrix equation for the sum method can be developed that
is applicable to any level scheme. After labeling the states ¢ = 1,..., N in the level scheme, a matrix representation

Ao =, (11.12)

can be written down, where A is the coefficient matrix composed of branching ratios, o is a vector of unknown
level-population cross sections, and b is the right-hand-side vector of known (measured population or calculated side-
feeding) cross sections. For each level, one of two possible types of equations can be written down. If the population

cross section for the level can be determined from experiment (i.e. if the yield for one or more « rays de-populating

(expt)

the level has been measured), the unknown population cross section o; is the measured cross section o; , trivially:

o; = olPY), 1113
3

If the population cross section of the it? level cannot be determined from measurements, then Eq. I1.5 is written down
instead:

o; = Z 0k, 0k + al(Side) (I1.14)
k

where the summation over k covers all levels that decay directly (i.e. in one step) to the i** level. Therefore, the
matrix elements are given by

1 ifi=j
A;; =< —aj,; if population o; not measured . (I1.15)
0 all other cases

Note the reversed order of indices between A; ; and «; ;. The right-hand-side vector elements are given by

K3
expt
Ul(XP)

(side) . . )
by = {U- if population o; not measured ‘ (IL.16)

otherwise

Thus for example, a straightforward application of Egs. I1.15 and I1.16 to the simple level scheme in Fig. 1 will
reproduce Eq. I1.10 upon inversion of the matrix equation.



C Graphical Method

Once Eq. I1.12 has been constructed using Eqgs. I1.15 and 11.16, it must be solved for the ground state cross section o7 .
This is a tedious procedure which may produce cumbersome equations. In order to simplify this process, a graphical
method is introduced to extract specific terms in the final expression for oy without invoking the full machinery of
matrix inversion. In the end, oy is a sum of all the contributions to the ground state population, and in the formalism
of this paper, these contributions have been divided into two types: i) calculated side feeding to a discrete level, and
ii) measured population cross section of a discrete level. In either case, an initial discrete “starting” state in the level
scheme is selected, and the initial cross section is tracked along a decay path to the ground state, provided it does
not traverse a level whose population cross section can be deduced from the measured yield of a y-ray depopulating it
(otherwise, that level becomes the starting level). Each time the decay path breaks off into a new branch from a level,
the de-excitation strength is scaled by the corresponding branching ratio. For the example in Fig. 1, there are five
possible decay paths to the ground state that do not traverse a measured level, and therefore five terms in the sum
that gives o1. These paths and the corresponding term in the sum are shown in Fig. 2. Adding all the contributions
from these graphs produces

o = o{side) + Oé2710'é5ide) + a271a3,20'§e)(pt) + a4710_4(1expt) + a4,2a2,10_£(1expt)
_ o_gside) + o_éside) + o_éexpt) + O_L(lexpt)’ (1117)

which is identical to Eq. I1.10, obtained using the analytical matrix equation.

IIT. APPLICATION

The sum method can be applied to more realistic cases such as the 23°U(n, 2n) and 23°Pu(n, 2n) cross sections,
recently investigated using partial v-ray yields measured with the GEANIE spectrometer at LANSCE/WNR [3-5].
An estimate of the channel cross section for these reactions is deduced here using the sum method, and contrasted
with the cross section obtained by the “ratio” method [5, 6], an alternate approach discussed in appendix A. The
results are compared with independently-measured [7, 8] or evaluated [9] channel cross sections.

A Application: the ?**U(n, 2n) cross section
1 Ezperimental data

A partial level scheme for 234U is displayed in Fig. 3. The transition arrows shown correspond to 7 rays for which
a yield was either directly measured [3] (solid arrows) or deduced (dotted arrows) from the measured yield of another
~ ray from the same level using known branching ratios. The set of non-coincident « rays displayed in Fig. 3 was
chosen from all the observed transitions because it includes the 6] — 41 « ray, the strongest and most reliably-
measured transition. Several of the v rays shown have nearly degenerate energies, which complicates the 233U(n, 2n)
cross-section estimate based on these data. The yield extracted for unresolved v-ray energies represents the sum of
the individual yields, while the matrix formulation of the sum method in Eqgs. I1.15 and I1.16 seemingly requires
individual transition cross sections, rather than their sum. The expedient solution is to discard those experimental
levels for which an individual population cross section cannot be unambiguously extracted. This extreme approach
reduces the amount of experimental information input to the sum method thereby increasing reliance on the model
calculation. In fact, a case-by-case examination of the degenerate =y rays for the selection of levels in Fig. 3 reveals a
more benign solution:

2 The E, = 880/880-keV degeneracy

An 880-keV transition appears twice in the level scheme: in the decay of the 3] state at £, = 1023.8 keV to the
4f level at E, = 143.4 keV, and in the transition from the 4;' level at E, = 1023.7 keV to the 4?' level at £, =
143.4 keV. Using the graphical method described in section IIC, it is possible to write all the contributions to the
ground-state population from the £, = 1023.7-keV and 1023.8-keV levels:



e} e} o U(eXpt) + « (o} e} a(eXpt)
2f —0f Taf —2f sy —af Vg 2f -0y af —of Fay —af Oy
(expt) (expt)]
=« a Qq— o, «a o 1111
2f —of Faf —of [ 3; —4f 3; + aF —af af ( )
—(expt)
—Ysum
where the level spin/parity/index J7 is used to label the levels. The quantity Uéﬁ):r{) ) in the square brackets is the
one measured in the experiment, rather than the individual transition cross sections o;- _,+ = ag-_ ,+ o':(;ixp ) and
2 1 2 1 3,
o =a oY) Fortunately, these individual cross sections are irrelevant, since only their sum (o{od"))
4;—>4T - 4;—>4T 4; . Y ) y sum

appears in the expression for the ground-state population cross section Tot (Eq. I11.1). Therefore, in order to use the
matrix formalism, it is always possible to write

Qlo— g
3, —>4;’ 35
(expt) _ (expt)
a4;-_)4¥-0'4g_ = Qp0gum (I11.2)

for any two number «, and ay satisfying the condition

oq +ap =1 (I11.3)

In other words, it does not matter how the transition cross sections are divided up between the 3; and 4§L levels, it

only matters that their combined contributions add up to Js(ﬁﬁ?t). Thus, the individual population cross sections

O.(EXPt) _ Qa O.(expt)
3. sum
2 Oz3; _)41+
(expt) __ A (expt)
ol = 2 slea (I11.4)
3 0443—_)4-1¢-

can be used in the right-hand-side vector in Eq. I1.12. In the present calculation, the value a, = o = 1/2 was used.

3 The Ey = 946/948-keV degeneracy

Two distinct transitions with energies E, = 946 keV (2] — 27) and 948 keV (5 — 47) cannot be separated in
the experiment. Therefore, the quantity

(expt)
27

(expt) —

_ (expt)
Ogum = = 0’21—_)2-1+— + 05-{_}4;- = a21—_>2-1¢—0 + a51+_)4-1e-0 (HI.5)

57

is the one actually measured. The graphical method of section 11 C gives the contribution from the 2 and 5] states:

(expt)

(expt)
2T + Qo+ _0F Oyt o+ Qs+ 4+0 s (IH.G)

Aot o Aoy 20 5+
which cannot be factored a priori as in section 111 A 2. However, the 4 — 2] transition is the only branch from the
4f level, and therefore Qut ot = 1. With this substitution, Eq. II1.6 can be rewritten as

(expt) (expt)
Qgf —of [%;ezr%; T Ot Oy
_ (expt)
- a21"—>0'1" Osum (III7)



and once again, the individual cross sections

U(eXPt) — Qq O_(expt)
2- « sum
t 27 —2f
(expt) __ s (expt)
ol7P) = 2 glen (IT1.8)
1 A5+ _af

can be used in Eq. I1.12 using any two numbers «, and «; that satisfy Eq. II1.3. In practice, oy = ap = 1/2 was
used.

4 The Ey = 925/926/927-keV degeneracy

The E, = 925, 926, and 927-keV transitions from the E, = 968.6 (3), 1069.3 (4; ), and 926.7 keV (27) levels
respectively are also degenerate within experimental resolution. The sum of all three transitions is measured:

(expt) —
Osum = = Ogf of T 04raf T 0ot _of

— (expt) (expt)
= Oafoat Ot T M@

(expt)
i + a2§r—»0;r‘723+ Py (HI.9)

On the other hand, the graphical method yields the contribution

(expt) (expt) (expt)
o o o o e Qy— 40, o o
2F —of ¥3fF—of 3f + 2f —of Yaf —of Car —af 4] + 2§ -0} 2f
oy gttt 0P pane g ragsp o TP (111.10)
2f -0y Yof —of Tor 2 —0f Yaf —of Yof —af T :

to the Ot Cross section from the three parent levels. Using the substitution Qb ot = 1, the first three term in

Eq. II1.10 could be factored into aﬁ_)oiras(ﬁ’,ft). However, this still leaves the last two terms in Eq. II1.10 which
involve aéixm). This situation differs from the cases discussed in sections 111 A 2 and 111 A 3 because one of the levels,

3
the 2; state at E, = 926.7 keV, decays by more than one transition, all of which are included in the cross-section
calculation but not in Us(ﬁﬁt). Fortunately, the yield for one of those v rays, the £, = 883-keV 2; — 21+ has been
measured. As a result, the JéiXp t) population cross section can be independently determined, and the problem can be

reduced from that of a threefold to a twofold degeneracy. In practice, the sum

/(expt) — (expt) (expt)
o = Qo+ o+ 0 Q- o
sum 32t g T gf 0y
__(expt) (expt)
= Ogus Qg 0t Opt (II1.11)

can be entirely determined from experimental data. Elements of the right-hand-side vector in Eq. I11.12 can now be
determined by the usual stratagem:

o,(eth) _ Lol(expt)
3+ a sum
! 3+ —af
(expt) __ ap /(expt)
oloP) = b/ (111.12)
1 0441—_)41+

where «, and «; are chosen to satisfy Eq. I11.3. In this case as well, a, = ap = 1/2 was used.



B Calculation

The experimental data for 23°U(n,2n) were combined with two versions of calculated cross sections, labeled
GNASH98 [10] and GNASHO0a [11], obtained using the Hauser-Feshbach code GNASH. The latter calculation in-
corporates improvements based in part on GEANIE ~-ray data for the 235U(n, 2n-y) reaction.! Comparison of (n, 2n)
cross-section estimates based on the two GNASH calculations provides a sensitivity tests to some of the details of the
model. The branching ratios in both GNASH predictions were adjusted from their values in the original calculation
to include internal conversion effects. In the application of the sum method, only statistical uncertainties in the
~v-ray data, and uncertainties in branching ratios used to extract level-population cross sections were included. The
resulting cross sections are plotted in Fig. 4 and should be compared with the ratio method results in Fig. 5. (See Ap-
pendix A for a description of the ratio method). In Fig. 4, we see that using either the GNASH98 or GNASH00a
calculation, the sum method produces a higher cross section than the values measured by Frehaut et al. [7] in the
FE, = 6-8 MeV range. For F,, = 811 MeV, the sum method agrees with the Frehaut values, and above 11 MeV, the
Frehaut points have large error bars and are not reliable. Near threshold, the excitation-function shape is different

in the ratio and sum methods. In the ratio method, the behavior near threshold can be affected by an artifact of

the technique, as both numerator and denominator in the calculated partial-to-total ratio S (()Ezlc)/ Ugalc) used in the

method approach zero. The sum method is well-behaved near threshold, and for this reason it is preferable to the
ratio method. Away from threshold, it is impossible to know which methods yields the answer closest to the physical
cross section, although both techniques give nearly the same values (at any incident neutron energy above E, = 7
MeV, results from the two methods using the GNASHO0Oa calculation differ by less than 4%).

Finally, it is worth noting that neither the ratio nor the sum method are model-independent. However, the
GNASH98 and GNASHO00a calculated (n,2n) cross sections in Fig. 4 differ by less that 11%, and likewise the
(n,2n) cross sections deduced by the sum method differ by less than 10% over the energy range above threshold. A
model-independent lower limit on the (n,2n) cross section can be obtained by setting UESlde) = 0 in Eq. I1.16, and is
shown in Fig. 6. This lower limit can be compared to the Frehaut data to quantify the fraction of the estimated (n, 2n)
cross section contributed by the model calculation (e.g., ~ 40% at F,, = 9.8 MeV). The sum method based on the
GNASHO0O0a calculation in Fig. 4 gives the preferred estimate of the 235U(n, 2n) cross section because it incorporates
the best available model calculation, and is well-behaved near threshold.

C Application: the *?Pu(n,2n) cross section

The 239Pu(n, 2n) cross section is interesting as a diagnostic tool. The cross section has recently been deduced from
v-ray data using the ratio method [5]. In this section, the (n,2n) cross section is obtained using the sum method.
As with the 235U(n, 2n) cross section discussed above, the 239Pu case is discussed here to show a realistic application
of the sum method; therefore only pertinent details are presented. Fig. 7 shows individual transition cross sections
for «y rays used in the sum method compared to the most recent GNASH calculation, GNASHOO0bD [12].? 3 Many of
the measured v-ray yields shown in Fig. 7 are underestimated by the calculation, while two of the strongest yields, for
the 157-keV 6] — 47 transition and the 617-keV 37 — 27 /57 — 47 doublet, are closely matched. Only statistical
uncertainties in the y-ray data, and uncertainties in branching ratios used to extract level-population cross sections
were included in the sum-method calculation. The final deduced cross sections, using both ratio or sum methods,
are shown in Fig. 8 and compared to the data measured by Lougheed et al. [8] and an evaluation [9] based on the
Lougheed et al. data and the ratio-method result. Below E, = 8 MeV (near threshold), the sum and ratio methods
agree because the GNASHOOD calculation was optimized to better reproduce the GEANIE data. In the E,, = 8-14
MeV range, the sum-method prediction is lower than the ratio-method cross section by less than 12%. Above E,,
= 14 MeV, the two methods give cross-section predictions that are consistent within uncertainties. Both sum- and
ratio-method results are significantly closer to the Lougheed et al. measurements near 14 MeV [8, 9] than the o, 2n)
value predicted by the GNASHOOD calculation.

1The improvements consist of: i) turning off the built-in pre-equilibrium spin-transfer model, ii) using an extended set of levels in the
discrete level scheme, and iii) using a modified value of the spin-cutoff parameter for the fission channel.

2The branching ratios in the GNASHOO0b prediction were adjusted from the original calculation to include internal conversion effects.

3The GNASHOOb calculation was further corrected using a neutron-energy-dependent factor to account for small differences between
the calculated and evaluated fission cross sections in the (n,2n) cross section.



The ratio method produces a 23°Pu(n, 2n) cross section that is slightly closer to the Lougheed et al. points than

calc) (calc)

the sum-method results and is insensitive to any variations in the reaction model that would change S(gbs and S .-

by the same multiplicative factor (see Eq. A2 in appendix A). In other words, the ratio method is robust under
the assumption that the model correctly predicts the partial-to-total ratio Séf;;lc) /or in Eq. A2. On the other hand,
the sum method is generally better-behaved near threshold, and the error bars obtained in the threshold region are

smaller than those calculated by the ratio method in this case. Unlike the 23°U(n,2n) result in section IIT A, the

model calculation for the 23°Pu(n, 2n) reaction reproduces the sum of measured partial cross sections, S, (cale)

obs > quite
well near threshold. The sum and ratio methods are therefore in good agreement near threshold and there is no
compelling reason to prefer the sum method over the ratio method. In fact, there is no way to decide a priori which
method yields the estimate that is closest to the physical 22°Pu(n,2n) cross section, and the prediction from either

method must be evaluated to provide the best estimate of the (n,2n) cross section.

IV. CONCLUSION

The sum method used to infer a reaction-channel cross section from measured partial y-ray cross sections in the
reaction-product nucleus has been discussed. In the method, complementary experimental and calculated cross-section
contributions are added to estimate the reaction cross section. The cross sections derived in this way are well-behaved
as a function of incident beam energy near threshold. A matrix representation of the method has been delineated to
provide a rigorous framework within which y-ray yields can be combined without the risk of double counting. This
approach also provides a convenient separation between two phase of the reaction mechanism governed by distinct
physics: side feeding of and transitions between discrete levels. A graphical approach is offered as an alternative to
the cumbersome matrix algebra. The sum method has been applied to the realistic cases of the 23°U(n,2n) and
239pu(n, 2n) cross sections, deduced from recently-measured y-ray yields. Based on these examples, the sum method
is preferred when calculated and measured partial y-ray cross sections are not in good agreement near the reaction
threshold. An alternate approach, the ratio method, is better suited in cases where it is known a priori that the ratio
of the sum of observed partial y rays to the (n,2n) cross section is correctly predicted by the model.
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APPENDIX A: THE RATIO METHOD

It is instructive to compare the sum-method result in Eq. I1.10 to an alternate scheme for combining measured and
calculated cross sections: the ratio method. In the ratio method, the reaction cross section op is estimated using
the formula

S(ebxpt)
ORrR = Cal: S calc)’ (Al)
S5t o)

where S(()E’;pt) and Ség:lc) are defined in section IT A, and agalc) is given by Eq. II.1. Equation A1 should be compared
to the sum-method formula in Eq. I1.2. Using Eq. II.1 the ratio-method definition in Eq. Al can be rewritten as

(expt) (calc) S(']:;Xpt)
OR = Sobsp + Sunobs X % ’ (A2)
Sobs

which resembles the sum-method equation apart from the additional factor in parentheses. Comparing Eqgs. 11.2 and

A2, it is clear that the two methods will yield the same value for the deduced reaction cross section if the measured
S(expt) _ S(calc))

ohs bs ). Because of the additional

and calculated sums of transition cross sections are the same (i.e., if
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factor in Eq. A2, the ratio method may become ill-behaved near the reaction threshold, where both Sc()i’s(p %) and Sé‘gzlc)

approach zero (see, e.g., section IIT A). The sum method does not suffer from this limitation. On the other hand,
if there is reason to believe that the ratio ¢/ Ugalc) is correctly predicted by the model, though the individual

numerator and denominator may not be, thcébsratio method provides a more reliable estimate of the channel cross
section than the sum method.

This last point is critical to the proper interpretation of either sum- or ratio-method results. In reaction-model
calculations there may be good reasons to expect that the ratio S (()Cbzlc) Ugalc) is well predicted by the model, but this
is not necessarily the case. In fact, it is not difficult to construct a counter-example, where a comparison between
measured and calculated v-ray yields seems to indicate an overall scale factor discrepancy, but the application of
the ratio method, which is designed to compensate for such a factor, yields a final answer farther from the physical
reaction cross section than the sum method.

Consider the simple level scheme in Fig. 1 with branching ratios ay,; = 0.80 and ay 2 = 0.20, and side-feeding cross
sections from a “best” calculation listed in table I, along with the true (physical) side-feeding cross sections. The

reaction cross section predicted by the calculation is given by (Eq. I1.8)

o_§best) _ a_§side) + Uéside) + U:gside) + Gflside)
= 50+ 150 + 52.7 4+ 47.3 = 300 mb,

when in fact, the true reaction cross section is

= 75+ 250 + 145 4 130 = 600 mb.

(true)
01

Assume a perfect experiment is performed wherein the true partial y-ray cross sections from levels 3 and 4 are
measured:

{7 = a3 5 x 0§99 = 145 mb

aé(fffl)t) =y X Ufide) = 104 mb,

with the corresponding population cross sections oéexpt) = 145 mb and affxpt) = 130 mb. The same partial cross
sections are predicted by the best available calculation to be:

(best) (side)

0.3—>2 = a3,2 X 0'3 = 527 mb
o{P%) = g x 09 = 37.84 mb.

Thus the calculated partial cross sections for the 3 — 2 and 4 — 1 transitions are lower than the measured values by
approximately the same factor of 2.75. Under these circumstances, it is tempting to invoke the ratio method when
estimating the reaction cross section. Using Eq. I1.11, we calculate

SPY) _ 145 1 130 = 275 mb

obs
S.) = 300 b
S5 = 52.7 4 47.3 = 100 b, .

and Eq. Al then gives the ratio-method estimate

(ratio) 275
o = —
! 100/300
= 825 mb,

which is 225 mb higher than the true value of 600 mb. Conversely, the sum method (Eq. I11.10) gives
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o™ = 50 + 150 + 145 + 130 (A4)
= 475 mb,

which is only 125 mb lower than the actual value.
To be fair, it is possible to construct examples where the ratio method gives a better estimate of the reaction
cross section than the sum method. In fact, neither method is guaranteed to produce a better estimate of the true

reaction cross section. In light of this, the sum method should be understood as more than just an equation (Eq. 11.2).
(calc)

imobs 18 correct and the data are accurate. The

corresponding implicit assumption in the ratio method is that the quantity S(()Cbzlc) / agalc) is correctly predicted by

the model.

The method also assumes implicitly that the model calculation of S
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TABLE I: Numerical example of a “best” side-feeding calculation for the level scheme in Fig. 1 compared to true

values of the cross sections. The numbers are chosen to illustrate potential limitations of the ratio method (see

Cross section Best value (mb) True value (mb)
o (5199 50 75
olside) 150 250
oo 52.7 145
olside) 47.3 130
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FIG. 1: Simple level scheme. The levels are labeled by integer indices. Solid downward arrows denote transitions for
(side)

which a yield has been measured, and dashed arrows denote transitions for which yields were not measured. Side-
is assumed that all the branching ratios are known from experimental work.

, calculated in a reaction-model code for each level i, are shown as horizontal arrows. It
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FIG. 2: Gamma-ray decay paths contributing to the total population of the ground state, for the level scheme in
Fig. 1. Levels whose population cross section can be deduced from the yield of a v ray depopulating it are highlighted
in red. The decay path followed in each case is traced in red. Each of the five paths depicted is labeled by the
corresponding term in the expression for the ground-state population cross section (Eq. 11.17).
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FIG. 3: Partial level scheme of 24U showing the transitions used in the determination of the 23°U(n, 2n) cross section
(see section IITA). Solid arrows denote transitions for which yields were measured, and dashed arrows imply that
the corresponding transition could not be observed, but the yields were deduced using known branching ratios. Each
transition arrow is labeled by the corresponding v-ray energy.
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FIG. 4: Sum-method estimate of the 3°U(n, 2n) cross section (solid circles) using measured ~-ray yields from exper-
imental data [3], and supplemented by side-feeding cross sections from the a) GNASH98 [10] and b) GNASH00a
[11] calculations. Only statistical errors for the data and uncertainties in branching ratio used to deduce the mea-
sured level-population cross sections have been included. For comparison, the (n,2n) cross section from the GNASH
calculation is shown as a solid line, and the Frehaut data [7] are plotted as solid squares in each case.
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FIG. 5: Ratio-method estimate of the 23°U(n, 2n) cross section (solid circles) combining measured ~y-ray yields from
experimental data [3] with a) GINASH98 [10] and b) GNASHO00a [11] calculations. Only statistical errors have
been considered for the data. For comparison, the (n,2n) cross section from the calculation is shown as a solid line,
and the Frehaut data [7] are plotted as solid squares. The cross section predicted by the ratio method near threshold
differs significantly from that predicted by the sum method and plotted in Fig. 4. This discrepancy is interpreted as
an artifact of the ratio method (see section III B).
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FIG. 6: Lower limit on the 233U(n, 2n) cross section obtained by setting afide) = 0 in Eq. I1.16. Only statistical errors

for the experimental data [3] and uncertainties on branching ratio used to deduce the measured level-population cross
sections have been included. For comparison, the (n,2n) cross section from the GNASH calculations are shown as
dotted and solid lines [10, 11], and the Frehaut data [7] are plotted as solid squares. The difference between this lower
limit and the Frehaut et al. data points gives the incremental cross section that the model calculation must supply
to estimate the (n,2n) cross section.
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FIG. 7: Selection of partial y-ray cross sections measured [5] in the 3*Pu(n, 2ny) reaction compared to GNASHO00b
calculations [12]. The v rays are labeled by transition energy in each panel.
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FIG. 8: The ?*9Pu(n, 2n) cross section determined using the sum and ratio methods with experimental data [5] and
the GNASHOOD calculation [12]. Data from Lougheed et al. [8, 9] and an evaluation by McNabb et al. [9], based
on the ratio-method results and the Lougheed et al. data, are shown for comparison along with the GNASHO00b

prediction.



